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The errors incurred in using extrapolation and interpolation in large scale compu-
tations are analyzed and quantified in the wavenumber space. If a large extrapolation
stencil is used, the errors in the low wavenumbers can be significantly reduced. How-
ever, the errors in the high wavenumbers are, at the same time, greatly increased.
The opposite is true if the stencil size is reduced. Based on the wavenumber analysis,
an optimized extrapolation and interpolation method is proposed. The optimization
is carried out over a selected band of wavenumbers. It is known that extrapolation
often leads to numerical instability. The instability is the result of large error ampli-
fication in the high wavenumber range. To reduce the tendency to trigger numerical
instability, it is proposed that an extra constraint be imposed on the optimized ex-
trapolation method. The added constraint aims to reduce error amplification over the
high wavenumbers. Numerical examples are provided to illustrate that accurate and
stable numerical results can be obtained in large scale simulation using a high-order
finite difference scheme and the proposed optimized extrapolation method. When the
same problems are recomputed using the familiar high-order polynomials extrapo-
lation method in the Lagrange form, in one case the numerical results are plagued
by large errors and ultimately instability. In another problem, it is found that the
use of the Lagrange polynomials extrapolation method would lead immediately to
numerical instability. c© 2000 Academic Press

Key Words:extrapolation; interpolation; wavenumber analysis; high-order finite
difference.

1. INTRODUCTION

Presently, interpolation and extrapolation are widely used in large scale scientific com-
puting. Some computation schemes, in particular a subset of essentially nonoscillatory sche-
mes, have incorporated extrapolation as an intrinsic part of the method (see Refs. [1–4]).
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Others, e.g., Refs. [5–8], used extrapolation to extend the values of the solution from the
interior to the boundary of the computation domain to form inflow and outflow boundary
conditions. Hayder and Turkel [9], on the other hand, employed extrapolation to implement
radiation boundary conditions for computational acoustics. When composite grids are used
in the solution of a scientific problem, there are occasions when some fringe points cannot
be updated by the general computation scheme. Steger and Benek [10] suggested that in
such a situation the solution at these points may be determined by extrapolation.

Many finite difference and finite volume schemes currently used in large scale computing
rely on interpolation as a key element of the algorithm. In multigrid methods, interpolation
is often used in the mesh to mesh transfer of the solution between the coarse and fine grids,
e.g., Refs. [11–14]. Some investigators prefer to use overset grids in their computation,
Refs. [8, 15–18]. In using overset grids, an interpolation procedure is invariably called upon
to perform data transfer in the region with overlapping mesh points. In the multidomain
method, very often a nonaligned grid is the most convenient grid for the problem. In formu-
lating their staggered grid spectral method, Kopriva and Kolias [19] employed interpolation
to resolve the nonaligned grid problem.

Using high-order polynomials is, by far, the most popular method for interpolation and
extrapolation. For convenience, we will use the Lagrange form of polynomial extrapolation
and interpolation In this work, we will only consider extrapolation and interpolation on
a regular mesh. Also, we will assume that a high-order finite difference or finite volume
scheme is used. To maintain comparable accuracy, a large stencil (nearly the same size as
the finite difference or finite volume scheme) is used for interpolation and extrapolation.
Suppose aN-point computation stencil with a mesh spacing1x is used to extrapolate the
values of a functionf (x) to the pointx0+ η1x (η<1) as shown in Fig. 1. Without loss of
generality, we will letx0 be the first stencil point. The Lagrange polynomials formed byN
mesh points are

`
(N)
k (x) =

N−1∏
j=0
j 6=k

(x − xj )

(xk − xj )
, k = 0, 1, 2, . . . , (N − 1). (1)

The extrapolated value off atη1x is then given by

f (x0+ η1x) '
N−1∑
k=0

fk`
(N)
k (x0+ η1x), (2)

where fk= f (xk), k= 0, 1, 2, . . . , (N− 1), are the values off at the mesh points.
It is interesting that most text books on numerical analysis discuss interpolation at great

length but rarely mention extrapolation. Conte and de Boor [20], after an in-depth presenta-
tion of interpolation, wrote that if the interpolation point went outside the stencil it became
extrapolation and “extrapolation should only be used with great caution.” The warning is
proper and real. It is a well known fact in scientific computing that extrapolation often

FIG. 1. Schematic diagram showing anN-point extrapolation stencil at spacing1x and the extrapolation
point atη1x.



590 TAM AND KURBATSKII

FIG. 2. Schematic diagram showing (a) the propagation and reflection of one-dimensional acoustic waves in
a long duct with a closed end, (b) the computational mesh and ghost point.

leads to numerical instability. This being the case, one is, however, surprised to find that the
literature has little to say why extrapolation causes numerical instability. Not knowing the
reason is, perhaps, why no new extrapolation scheme, that is both accurate and less prone
to instability, has been proposed in recent years.

The main objective of this work is to examine extrapolation and interpolation from a
wavenumber standpoint. It will be shown that the errors incurred in extrapolation and
interpolation can be determined precisely in wavenumber space. By knowing the errors
quantitatively, it is possible to adjust the coefficients of the scheme to make the extrapolation
and interpolation procedure accurate over a large band of wavenumbers.

To provide a concrete example of numerical instability arising from the use of the
Lagrange polynomials extrapolation method and to show that such an instability can be
suppressed by using an improved method, let us consider the problem of acoustic wave
propagation and reflection in a long tube (one-dimensional) with closed ends (see Fig. 2).
For convenience, dimensionless variables with respect to length scale1x (the mesh spac-
ing), velocity scalea∞ (the speed of sound), time scale1x

a∞
, density scaleρ∞ (ambient gas

density), and pressure scaleρ∞a2
∞ will be used. It will be assumed that the right end wall

is not at a mesh point but at a distanceη (η<1.0) from the last mesh point̀= 0 as shown
in Fig. 2. The governing equations are the linearized momentum and energy equations of
a compressible fluid. Letu and p be the fluid velocity and pressure. The dimensionless
governing equations are

∂u

∂t
+ ∂p

∂x
= 0 (3)

∂p

∂t
+ ∂u

∂x
= 0. (4)

The wall boundary condition is

u = 0 at x = η. (5)

Suppose one solves the problem by finite difference approximation inx on a mesh as
shown in Fig. 2. To provide a highly accurate solution with small dispersion error, let us
use the standard 7-point central difference scheme (6th orders scheme) to approximate the
x-derivative. The semi-discretized system derived from (3) and (4) is

du`
dt
+

3∑
j=−3

aj p`+ j = 0 (6)
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dp̀

dt
+

3∑
j=−3

aj u`+ j = 0, (7)

where` is the mesh point index and theaj (−3≤ j ≤ 3) are the stencil coefficients. Near
the wall where a 7-point central difference scheme cannot fit, backward difference stencils
are used. Since the wall is not at a mesh point, the value ofu at the wall may be obtained by
extrapolation using the values ofu at the nearest seven mesh points. Suppose the Lagrange
polynomials are used for extrapolation. The wall boundary condition (5) becomes

6∑
k=0

u−k`
(7)
k (η) = 0. (8)

To enforce the boundary condition in the finite difference computation, the ghost point
method of Tam and Dong [21] may be used. The ghost point method was designed for use
in conjunction with a high-order finite difference scheme. In this method, a ghost value of
pressure at the ghost point,`= 1, is introduced. The ghost value is chosen so that (8) is
satisfied at every time level of the computation.

In the Appendix, it will be shown that the above discrete system is numerically unstable.
The system supports a single boundary instability mode with time dependencee−iωt where
ω=ωr + iωi is the complex frequency. The angular frequency,ωr , and the temporal growth
rate,ωi , of the instability can be determined analytically. They are given in Fig. 3 as a
function of η (the location of the wall from the first mesh point). The instability can, of
course, be determined computationally as well by using a time marching scheme such
as the 4th-order Runge–Kutta scheme (with a very small time step). Figure 4 shows the
computed value ofp at `=−3 as a function of time. By measuring the oscillation period
and amplitude, the angular frequency and growth rate of the boundary instability can be
found. The numerically determined values ofωr andωi are in good agreement with the
analytical values of the Appendix. They are shown in Fig. 3.

The observed numerical instability of the acoustic wave problem is due entirely to the use
of the Lagrange extrapolation formula (8). It will be shown later that by using an improved
extrapolation scheme, there is no numerical instability. A hint that the boundary instability
can be eliminated may be found in Fig. 3b. This figure clearly indicates that even when the
Lagrange polynomials extrapolation formula is used, the system is unstable only whenη is
larger than 0.42. So it is highly plausible that one could design a new extrapolation scheme
capable of extending the stable region all the way toη= 1.0.

Numerical instability inevitably requires a mechanism to amplify the numerical solution
unintentionally. The difference between an amplified solution and the true solution is the
error. In other words, a mechanism that introduces large error could lead to numerical in-
stability. From this point of view, a necessary condition for being able to design a more
stable extrapolation scheme is a way to assess quantitatively the error of the scheme. Fur-
thermore, if a method to control the maximum error is found, then by implementing the
method to limit the maximum error of an extrapolation scheme, it would then be possi-
ble to diminish the prospect of encountering numerical instability in large scale compu-
ting.

For the Lagrange polynomials method, there is no known way to calculate the errors
quantitatively. To assess error, the standard approach suggests that one assume that1x is
small and then make use of the Taylor series expansion of Eq. (2) to provide an order of
magnitude error estimate. It can be shown by truncating the Taylor series that the method
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FIG. 3. Boundary instability induced by numerical extrapolation using Lagrange polynomials. (a) Real part
of unstable frequency versus the distance of extrapolation to the wall, (b) the imaginary part. —, analytical;◦,
numerical simulation.

has an error of order(1x)(N−1) if N mesh points are used for extrapolation. Unfortunately,
this order of magnitude error estimate is not quantitative enough to be useful.

The rest of this paper is as follows. In Section 2, a way to determine the errors involved
in extrapolation from the values of a function atN mesh points to a point atη is presented.
This analysis is carried out in wavenumber space. An optimized extrapolation procedure is
then developed. The purpose of the optimization is to keep the extrapolation error minimum
over a large band in wavenumber space. It will be shown that extrapolation could introduce
large error in the high wavenumbers or short waves. This large error is the mechanism
which amplifies the solution leading to numerical instability. Thus numerical instability is
primarily associated with the short waves. It is proposed to add an additional constraint in
the optimization process to keep the overall error smaller in the high wavenumbers. In this
way, the tendency for extrapolation to trigger numerical instability is greatly reduced. In
Section 3 a wavenumber analysis of interpolation is performed. Based on the results of this
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FIG. 4. Computed pressure time-history atl =−3. The wall is located atη= 0.45.

analysis, an optimized interpolation method is developed. In Section 4, an example on the
use of the newly developed extrapolation and interpolation method in large scale computing
is provided. This example offers strong evidence that the new extrapolation method, when
used in conjunction with high-order finite difference schemes, can yield accurate and stable
numerical solutions.

2. WAVENUMBER ANALYSIS OF EXTRAPOLATION

We will assume that the functionf (x), to be extrapolated, has a Fourier transformf̃ (α)
whereα is the wavenumber.f (x) is related to f̃ (α) by the Fourier inverse transform
formula,

f (x) =
∞∫
−∞

f̃ (α)eiαx dα. (9)

For convenience, we will denote the absolute value and argument off̃ (α) by A andφ, i.e.,

A(α) = | f̃ (α)| and φ(α) = arg[ f̃ (α)]

so that (9) may be rewritten as

f (x) =
∞∫
−∞

A(α)ei (αx+φ(α)) dα. (10)

A simple interpretation of (10) is thatf (x) is made up of a superposition of simple
waves with wavenumberα and amplitudeA(α). Recently, a wavenumber analysis of large



594 TAM AND KURBATSKII

stencil finite difference schemes (see Tam and Webb [22] and Tam [23]) has shown that
finite difference schemes are accurate only over a limited band of low wavenumbers. We
will consider designing an extrapolation scheme that is highly accurate over a similar
wavenumber range, say,−κ ≤α1x≤ κ. Our goal is for the extrapolation scheme to work
well for very general functions. For this purpose, it will be sufficient to consider waves with
unit amplitude over the desired band of wavenumbers. Thus from (10), the simple wave
with wavenumberα to be considered is

fα(x) = ei [αx+φ(α)] . (11)

The total effect on the functionf (x) will, of course, have to be weighed by the amplitude
function A(α).

2.1. Extrapolation Error in Wavenumber Space

Now, instead of the Lagrange polynomials extrapolation formula (2), we will use the
general formula

f (x0+ η1x) =
(N−1)∑

j=0

Sj f (xj ), xj = x0− j1x, (12)

whereSj ( j = 0, 1, 2, . . . , (N− 1)) are the stencil coefficients.Sj = `(N)j (x0+ η1x) if the
Lagrange polynomials are used. We will define the local extrapolation error,Elocal(η, κ,

α1x, N), as the square of the absolute value of the difference between the left and right
side of (12) when the single Fourier component of (11) is substituted into the formula. Note:
the dependence on the parameterκ will become clear later.

Elocal(η, κ, α1x, N) =
∣∣∣∣∣ei [α(x0+η1x)+φ] −

N−1∑
j=0

Sj e
i [α(x0− j1x)+φ]

∣∣∣∣∣
2

=
∣∣∣∣∣eiηα1x −

N−1∑
j=0

Sj e
−i j α1x

∣∣∣∣∣
2

. (13)

It is to be noted thatElocal(η, κ,−α1x, N)= Elocal(η, κ, α1x, N), so thatElocal is an even
function ofα1x.

The integrated error over the band of wavenumbers fromα1x= 0 toα1x= κ is

E =
κ∫

0

∣∣∣∣∣eiηα1x −
N−1∑
j=0

Sj e
−i j α1x

∣∣∣∣∣
2

d(α1x). (14)

One desired property of extrapolation is that the error is zero if the function is a constant
(i.e., zero wavenumber). The extrapolation error in this special case is obtained by setting
α= 0 in (13). We will, therefore, restrict the choice ofSj by the condition

Elocal(η, κ,0, N) =
∣∣∣∣∣1−

N−1∑
j=0

Sj

∣∣∣∣∣
2

= 0. (15)
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Now, we will chooseSj , the coefficients of extrapolation formula (12), so thatE is a
minimum subjected to the constraint (15). This constrained optimization problem can easily
be handled by the method of Lagrange multiplier. The Lagrangian function may be defined
as

L =
κ∫

0

∣∣∣∣∣eiηy −
N−1∑
j=0

Sj e
−i j y

∣∣∣∣∣
2

dy+ λ
(

N−1∑
j=0

Sj − 1

)
. (16)

The coefficientsSj and the parameterλ are found by solving the linear system,

∂L

∂Sj
= 0 or Re

− κ∫
0

ei jy

(
eiηy −

N−1∑
k=0

Ske−iky

)
dy

+ λ
2
= 0 (17)

∂L

∂λ
= 0 or

N−1∑
j=0

Sj − 1= 0. (18)

The algebraic system of (17) and (18) leads to the linear matrix equation

κ sinκ sin 2κ
2

sin 3κ
3

sin 4κ
4 · · · sin[(N−1)κ]

N−1
1
2

sinκ κ sinκ sin 2κ
2

sin 3κ
3 · · · sin[(N−2)κ]

N−2
1
2

sin 2κ
2 sinκ κ sinκ sin 2κ

2 · · · sin[(N−3)κ]
N−3

1
2

sin 3κ
3

sin 2κ
2 sinκ κ sinκ · · · sin[(N−4)κ]

N−4
1
2

· · · · · · · · · ·
· · · · · · · · · ·

sin[(N−1)κ]
N−1

sin[(N−2)κ]
N−2 · · · · sin 2κ

2 sinκ κ 1
2

1 1 1 · · · 1 1 1 0



·



S0

S1

S2

S3

·
·

SN−1

λ


=



sin(ηκ)
η

sin(η+ 1)κ
η+ 1

sin(η+ 2)κ
η+ 2

sin(η+ 3)κ
η+ 3

·
·

sin(η+ N− 1)κ
η+N−1

1



. (19)

For a givenη and N, the coefficients of the extrapolation formula (12),Sj , can be found
by solving (19).κ is a free parameter, which can be selected to offer the best overall re-
sults. Obviouslyκ has a significant influence on the values ofSj and hence the local error
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FIG. 5. (a) Dependence of local error on wavenumber over the long wave range for the caseη= 0.75,
N= 7. . . . , κ = 0.8; - - -, κ = 0.85; —·—·—, κ = 0.95; — - — - —, κ = 1.0; —, κ = 1.05; —··—··—, κ = 1.1;
— — —, Lagrange polynomials extrapolation. (b) Dependence of local error on wavenumber (full range) for
the caseη= 0.75, N= 7. . . . , κ = 0.8; - - -, κ = 0.85; —·— ·—, κ = 0.95; — - — - —,κ = 1.0; —, κ = 1.05;
—··—··—, κ = 1.1; — — —, Lagrange polynomials extrapolation.

Elocal(η, κ, α1, N). Figure 5a shows the dependence ofE1/2
local on wavenumberα1x in the

caseη= 0.75 andN= 7 for several values ofκ. This figure is typical of other values of
η andN. Plotted in this figure also is the local error of the Lagrange polynomials extrap-
olation. It is readily seen that the Lagrange polynomials extrapolation is very accurate for
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low wavenumbers. For wavenumbers larger thanα1x= 0.6 or wavelengths shorter than
10.51x, the local error is quite large. Many finite difference schemes used in large scale
computations and simulations, especially those designed for solving wave propagation prob-
lems (see Refs. [22, 23]), can resolve waves longer than 8 mesh spacings orα1x≤ 0.85. It
would, therefore, be incompatible to use the Lagrange polynomials extrapolation with these
schemes. On the other hand, the local error of the optimized extrapolation is larger at very
low waveumbers. But the error is not excessive even forα1x as large as 0.85 or wavelength
equal to 8 mesh spacings. It has much less error over the intermediate wavenumber range.

Figure 5b shows the distribution of local error for the same values ofη andN as Fig. 5a
but over the full range of wavenumbers, i.e., 0≤α1x≤π . For high wavenumbers, in
particular atα1x=π or the grid-to-grid oscillations, the local error is extremely large for
the Lagrange polynomials extrapolation. In the case of the optimized extrapolation, the
error, depending on the choice ofκ, is less. Nevertheless, it is still large and unacceptable.
For this reason, it is important that the function to be extrapolated be sufficiently smooth
and free of high wavenumber components.

To examine the variation of extrapolation error onη, let

Emax(η, κ, N) = max
0≤α1x≤0.85

Elocal(η, κ, α1x, N). (20)

This is the maximum error incurred in the extrapolation process if the function involved
has a Fourier spectrum confined to the rangeα1x≤ 0.85. Figure 6 shows the dependence
of Emax on η for the caseN= 7. If the Lagrange polynomials extrapolation is used, the
maximum error grows rapidly withη, the distance of extrapolation.Emax for the optimized

FIG. 6. Dependence of maximum local error (maximized over 0≤α1x≤ 0.85) onη for the caseN= 7. . . . ,
κ = 0.8; - - -, κ = 0.85; —·—·—, κ = 0.95; — - — - —, κ = 1.0; —, κ = 1.05; —··—··—, κ = 1.1; — — —,
Lagrange polynomials extrapolation.
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scheme is much less. Forκ = 0.85, E1/2
max reaches a value of 0.0092 atη= 1.0. In most

situations,η is less than 1.0 and the error is accordingly much smaller.
An extensive investigation of the local error distribution for the values ofη from 0 to 1

andN= 5, 6, 7, and 8 has been carried out. It is found that the local error remains low over
0≤α1x≤ 0.85 if κ is taken to be 0.85. Based on this numerical study, it is recommended
that the parameterκ be assigned the value 0.85 when used in connection with large scale
high-order finite difference computation. In the remainder of this paperκ is set equal to
0.85 unless stated otherwise.

2.2. Additional Constraint for Optimized Extrapolation

Figure 5b reveals that even for the optimized extrapolation, the error for high wavenum-
bers, particularly forα1x nearπ , can be excessive. What this means is that if a large scale
computation contains high wavenumber components, these components can be greatly am-
plified by the extrapolation process. We believe that it is this numerical error amplification
mechanism that is responsible for the well known numerical instability widely encountered
in the use of extrapolation. From this point of view, it would be desirable to keep the local
error atα1x=π and the high wavenumbers smaller. This can be done by imposing an
additional constraint on the optimization process by which the extrapolation coefficients,
Sj , are found. Suppose it is desired to fix the extrapolated error of the function atα1x=π
to be a prescribed value, say,h(η). That is, we impose the additional condition,

ei (αx0+φ)

N−1∑
j=0

Sj e
−i j π − h(η)

 = 0. (21)

The first term of (21) is equal to the extrapolated value of the simple wave functionfα(x) of
(11) atα1x=π . It is usually much larger thaneiηπ and hence, for all intents and purposes,
it is equal to the squared root of the local error. By specifying the functionh(η), one imposes
the maximum error allowed atα1x=π . Needless to say, the choice ofh(η) would affect
the extrapolation error over the low wavenumber range. Thus a compromise must be made
to allow a slight increase in the extrapolation error over the low wavenumber range in
exchange for a reduction in error forα1x in the neighborhood ofπ . Extensive numerical
experiments have been carried out to find a good selection ofh(η). We find that the simple
choice of a linear function ofη,

h(η) = 1.0+ 19η (22)

works quite well.
Upon including (21) as an additional constraint, the Lagrangian function to be minimized

may be taken to be

L =
κ∫

0

∣∣∣∣∣eiηy −
N−1∑
j=0

Sj e
−i j y

∣∣∣∣∣
2

dy+ λ
(

N−1∑
j=0

Sj − 1

)
+ µ

(
N−1∑
j=0

Sj e
−i j π − h(η)

)
. (23)

The conditions for minimization are

∂L
∂Sj
= 0, j = 0, 1, 2, . . . , (N − 1),

∂L
∂λ
= 0,

∂L
∂µ
= 0. (24)
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Equation (24) may be recast into a matrix system similar to (19). The matrix equation has
the form

κ sinκ sin 2κ
2

sin 3κ
3

sin 4κ
4 · · sin[(N− 1)κ]

N−1
1
2

1
2

sinκ κ sinκ sin 2κ
2

sin 3κ
3 · · sin[(N− 2)κ]

N− 2
1
2 − 1

2

sin 2κ
2 sinκ κ sinκ sin 2κ

2 · · sin[(N− 3)κ]
N− 3

1
2

1
2

sin 3κ
3

sin 2κ
2 sinκ κ sinκ · · sin[(N− 4)κ]

N− 4
1
2 − 1

2

· · · · · · · · · ·
· · · · · · · · · ·

sin[(N−1)κ]
N−1

sin[(N− 2)κ]
N− 2

sin[(N− 3)κ]
N− 3 · · · · κ 1

2 (−1)N−1 1
2

1 1 1 1 1 · · 1 0 0

1 −1 1 −1 1 · · (−1)N−1 0 0



·



S0

S1

S2

S3

·
·

SN−1

λ

µ


=



sin(ηκ)
η

sin(η+ 1)κ
η+ 1

sin(η+ 2)κ
η+ 2

sin(η+ 3)κ
η+ 3

·
·

sin(η+ N− 1)κ
η+ N− 1

1

h(η)



. (25)

Matrix (25) can be solved readily. Once theSj ’s are found, one can again assess the
local error Elocal(η, κ, α1x, N) as before. Figure 7a shows the variation ofE1/2

local with
wavenumbersα1x for κ = 0.85, N= 7, at four values ofη. As can be seen, for a com-
putation with a spatial resolution of 8 mesh spacings per wavelength orα1x≤ 0.8, the
maximum extrapolation error is less than 1.5%. For comparison purpose, the local error for
the Lagrange polynomials extrapolation is also plotted. It is evident that forα1x> 0.6, the
error is huge. Figure 7b shows an identical plot but covers the entire range of wavenumbers.
Nearα1x=π , there is significant difference in the errors between the two extrapolation
procedures. For instance, forη= 1.0 the Lagrange polynomials method has an error about
six times larger than that of the optimized scheme. We, therefore, expect that the improved
optimized scheme is less likely to induce numerical instability.

Figures 8a–9b provide similar information as Figs. 7a and 7b at stencil size of 5 and 8.
They are included here to offer numerical data on the effect of using a smaller or larger
extrapolation stencil. Generally speaking, the use of a larger stencil reduces the error in the
low wavenumber range but increases the error at high wavenumbers. This is the type of trade-
off information that would help one to decide the proper stencil size to use in a given situation.

To provide a concrete example that the added constraint in the optimized extrapolation
method does reduce numerical instability, the one-dimensional acoustic wave propagation



600 TAM AND KURBATSKII

FIG. 7. (a) Local error as a function of the wavenumber using the optimized extrapolation method with an
added constraint.κ = 0.85, N= 7.

η Optimized extrapolation Lagrange polynomials extrapolation

0.25 — —·— ·—
0.50 - - - —··— ··—
0.75 · · · — · · ·— · · ·—
1.00 — — — —· · ··— · · ··—

(b) Same as (a) but for wavenumber 0≤α1x≤π .
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FIG. 8. (a) Local error as a function of the wavenumber using the optimized extrapolation method with an
added constraint.κ = 0.85, N = 5.

η Optimized extrapolation Lagrange polynomials extrapolation

0.25 — —·— ·—
0.50 - - - —··— ··—
0.75 · · · — · · ·— · · ·—
1.00 — — — —· · ··— · · ··—

(b) Same as (a) but for wavenumber 0≤α1x≤π .
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FIG. 9. (a) Local error as a function of the wavenumber using the optimized extrapolation method with an
added constraint.κ = 0.85, N= 8.

η Optimized extrapolation Lagrange polynomials extrapolation

0.25 — —·— ·—
0.50 - - - —··— ··—
0.75 · · · — · · ·— · · ·—
1.00 — — — —· · ··— · · ··—

(b) Same as (a) but for wavenumber 0≤α1x≤π .
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and reflection problem discussed in the introductory section is again considered. Now let
the extrapolation ofu to the wall location atx= η (see Eq. (5)) be carried out by the opti-
mized extrapolation scheme with an added constraint instead of the Lagrange polynomials
extrapolation; i.e., replacing (8) by

6∑
j=0

u− j Sj (η) = 0. (26)

The boundary instability problem is recalculated following the procedure in the Appendix.
The analytic results as well as direct numerical simulations indicate that there is no bound-
ary instability. In other words, the optimized scheme with the additional constraint has
effectively eliminated the boundary instability altogether. This example should lend confi-
dence that the new extrapolation method has less tendency to induce numerical instability
which is an extremely desirable characteristic. It is to be noted that by using the optimized
scheme alone, without the added constraint, the problem remains unstable, although with a
lower growth rate. The additional constraint to reduce amplification at high wavenumbers
is essential to numerical stability.

3. OPTIMIZED INTERPOLATION

Interpolation is a subject that is treated in great depth in most books on numerical analysis.
In addition to high-order polynomials, piecewise polynomials, splines, and trigonometric
functions are often used. They generally give good results. However, a survey of the com-
monly used textbooks indicates that interpolation error is seldom discussed quantitatively.
Most books use the Taylor series truncation term as an error indicator. But such a term
cannot be easily translated into useful quantitative information.

In this section, we will perform a wavenumber analysis of interpolation error and, at
the same time, formulate an optimized interpolation procedure. Interpolation is generally
a numerically stable operation incurring relatively less error than extrapolation. For this
reason, one can only expect a relatively small improvement by the optimized interpolation
as compared to using, for example, the more familiar Lagrange polynomials interpolation
or polynomial interpolation under some other famous names.

3.1. Wavenumber Analysis of Interpolation

Consider anN-point interpolation stencil as shown in Fig. 10. Letx0 be the first point of
the stencil. The other stencil points are located atxj = x0− j1x. Suppose the interpolation
point is in theK th interval of the stencil at a distance ofη1x to the right ofxK . In other
words, the value of a function at the interpolation pointxi = x0− K1x+ η1x is to be
found from the known values atxj ( j = 0, 1, 2, . . . , (N− 1)).

FIG. 10. An N-point interpolation stencil showing the location of the interpolation point.
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The interpolation formula is

f (x0− (K − η)1x) =
N−1∑
j=0

Sj f (xj ). (27)

As in the case of extrapolation, we will define the local interpolation error,Ēlocal, as the
square of the absolute value of the difference between the left and the right sides of (27)
when the single Fourier component of (11) is substituted into the formula, i.e.,

Ēlocal =
∣∣∣∣∣ei [α(x0−K1x+η1x)+φ] −

N−1∑
j=0

Sj e
i [α(x0− j1x)+φ]

∣∣∣∣∣
2

=
∣∣∣∣∣e−i (K−η)α1x −

N−1∑
j=0

Sj e
−i j α1x

∣∣∣∣∣
2

. (28)

Now, the local errorĒlocal(η, κ, α1x, N, K ) depends on the parameterK as well asη, κ,
α1x, andN; the parameters involved in extrapolation.

The integrated error over the band of wavenumbers fromα1x= 0 toα1x= κ is

Ē =
κ∫

0

∣∣∣∣∣e−i (K−η)α1x −
N−1∑
j=0

Sj e
−i j α1x

∣∣∣∣∣
2

d(α1x). (29)

We will now chooseSj so thatĒ is a minimum subjected to the condition that there is no
error for the zero wavenumber component. The zero wavenumber condition may be written
as

Ēlocal(η, κ,0, K , N) =
∣∣∣∣∣1−

N−1∑
j=0

Sj

∣∣∣∣∣
2

= 0. (30)

The Lagrangian function to be minimized is

L̄ =
κ∫

0

∣∣∣∣∣e−i (K−η)y −
N−1∑
k=0

Ske−iky

∣∣∣∣∣
2

dy+ λ
(

N−1∑
k=0

Sk − 1

)
. (31)

The conditions for minimum are

∂ L̄

∂Sj
= 0,

∂ L̄

∂λ
= 0, j = (0, 1, 2, . . . , (N − 1)). (32)

Equation (32) yields the algebraic equations

N−1∑
j=0

Sj
sin(`− j )κ

(`− j )
+ λ

2
= sin(`− K + η)κ

(`− K + η) , ` = 0, 1, 2, . . . , (N − 1) (33a)

N−1∑
j=0

Sj = 1. (33b)
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FIG. 11. Local interpolation error as a function of wavenumber.N= 2, K = 1, η= 0.75. . . . , κ = 0.85;
- - -, κ = 0.9; —·—·—, κ = 0.95; — - — - —, κ = 1.0; —, κ = 1.05; —··—··—, κ = 1.1; — — —, Lagrange
polynomials interpolation.

The linear system (33) can be rewritten in a matrix form similar to Eq. (19). The matrix
equation can be solved easily to provide the interpolation coefficients,Sj ( j = 0, 1, 2, . . . ,
(N − 1)).

3.2. Numerical Results

The local interpolation error,̄Elocal, as a function of wavenumberα1x depends on a
number of parameters. They areN (the stencil size),K (the interval number), andη (the
distance to the mesh point) as well as the free parameterκ. Numerical results are now
provided to offer an idea on the magnitude of the error and how it is influenced by the
various parameters.

Let us begin withN, the size of the stencil. Figure 11 shows the distribution ofĒ1/2
local

in wavenumber space forη= 0.75 using only two interpolation points,N= 2. This is a
very special case. The parameterκ appears to have negligible effect on the local error.
Also the optimized scheme yields almost identical results as the Lagrange polynomials
interpolation. The error is quite large in the high wavenumber range but relatively small
at low wavenumbers. We will now keep the interpolation point in the first interval of the
stencil, i.e.,K = 1, but allow the stencil size to increase. Figures 12a and 12b show the local
error distributions as functions of wavenumber at various values ofκ with N= 7 or seven
interpolation points. On comparing with Fig. 11, it is clear that by increasing the size of the
stencil, the error in the low wavenumber range drops rapidly. At the same time, the error in
the high wavenumbers increases dramatically.

If the interpolation point lies in the interior of a large stencil, one intuitively expects
much smaller error than when it is located at the first interval. Figures 13a and 13b show



606 TAM AND KURBATSKII

FIG. 12. (a) Local interpolation error as a function of wavenumber.N= 7, K = 1, η= 0.75. . . . , κ = 0.85;
- - -, κ = 0.9; — ·— ·—, κ = 0.95; — - — - —,κ = 1.0; —,κ = 1.05; — · ·— · ·—, κ = 1.1; — — —, Lagrange
polynomials interpolation. (b) Same as (a) but for wavenumber 0≤α1x≤π .

the numerical results forN= 7, η= 0.75, andK = 2. Figures 14a and 14b show the cor-
responding results forK = 3. These results completely confirm the intuitive expectation.
Over the long wave range,α1x≤ 0.9, there is hardly any error when the interpolation point
lies in the center interval.

We will now consider the effect of the distance of the interpolation point from the stencil
point, namely,η. Extensive numerical computation of the local error asη varies with the
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FIG. 13. (a) Local interpolation error as a function of wavenumber.N= 7, K = 2, η= 0.75. . . . , κ = 0.85;
- - -, κ = 0.9; — ·— ·—, κ = 0.95; — - — - —,κ = 1.0; —,κ = 1.05; — · ·— · ·—, κ = 1.1; — — —, Lagrange
polynomials interpolation. (b) Same as (a) but for wavenumber 0≤α1x≤π .

other parameters fixed reveals that there is little change in the local error. In other words,η

has a relatively small effect on the local error.
Finally, we turn to the free parameterκ. After reviewing and comparing all the numerical

results we have, it is our opinion that a good overall choice for this parameter is 1.0. This
value ofκ provides a large range of low wavenumbers over which the interpolation error
is small. At the same time, the error at high wavenumbers is still numerically small. In
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FIG. 14. (a) Local interpolation error as a function of wavenumber.N= 7, K = 3, η= 0.75. . . . , κ = 0.85;
- - -, κ = 0.9; — ·— ·—, κ = 0.95; — - — - —,κ = 1.0; —,κ = 1.05; — · ·— · ·—, κ = 1.1, — — —, Lagrange
polynomials interpolation. (b) Same as (a) but for wavenumber 0≤α1x≤π .

most large scale computations, the high wavenumber components will remain unresolved.
They are the spurious numerical waves, which are often suppressed by the inclusion of
artificial selective damping or filtering. As a result, the amplitude of the high wavenumber
components is small. Any amplification by the interpolation process would still be small.
They should not be a concern except in unusual circumstances.
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4. NUMERICAL EXAMPLE

As an example on the use of extrapolation and interpolation in large scale computing,
we will consider the problem of scattering of plane acoustic waves by a cylinder in two
dimensions. Let the diameter of the cylinder beD. The governing equations are the linearized
Euler equations. In dimensionless form, they may be written as (with respect to length scale
D, velocity scalec (speed of sound), time scaleDc , density scaleρ0, and pressure scale
ρ0c2),

∂U
∂t
+ ∂E
∂x
+ ∂F
∂y
= 0, (34)

where

U =


ρ

u
v

p

 , E =


u
p

0
u

 , F =


v

0
p
v

 .
On the surface of the cylinder, the boundary condition isV ·n= 0 wheren is the unit normal
to the surface. It can be easily shown that an equivalent form of the boundary condition is

∂p

∂n
= 0. (35)

Equation (34) can be discretized on a Cartesian mesh using a high-order finite difference
scheme such as the dispersion-relation-preserving scheme, Ref. [22]. The advantage of a
high-order scheme is that the numerical dispersion and dissipation error may be minimized.
The scattered sound field can be found by time marching the numerical solution to a time
periodic state. However, because the cylinder has a curved surface, a special boundary
treatment is needed to enforce boundary condition (35). For this purpose, the present authors
[24] have extended the ghost point method of Tam and Dong [21] to treat arbitrarily curved
wall boundaries. As an illustration of the boundary treatment, consider the curved boundary
shown in Fig. 15. First, the boundary curve is approximated by line segments joining the
intersection points of the computation mesh and the boundary. For instance, the curved
surface between pointsA and B in Fig. 15 is replaced by a straight line segment.G2 is
a ghost point. A ghost value of pressure is assigned toG2 to enforce boundary condition
(35). The enforcement point is atE; G2E is perpendicular toAB. Since∂p

∂x and ∂p
∂y are not

known except on the mesh points, their values atA andB are found by extrapolation from
the points at(1′, 2′, 3′, 4′, 5′, 6′, 7′) and(1, 2, 3, 4, 5, 6, 7), respectively. The corresponding
values atE are then calculated by interpolation from those atA andB. Once∂p

∂x and ∂p
∂y are

found atE, (35) can be enforced readily.
To show the impact of the extrapolation scheme on the computed results of the scattered

waves, a computation domain of 320× 320 with1x=1y= D
32 is used in the solution of

the scattering problem. The wavelength of the incoming acoustic waves is equal to 81x.
The incoming plane acoustic waves are generated by a set of nonhomogeneous radiation
boundary conditions developed by Tam, Fang, and Kurbatskii [25] imposed at the boundary
region of the computation domain. The nonhomogeneous radiation boundary conditions
perform two functions. First, they generate the incoming waves. Then they also allow the
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FIG. 15. Cartesian boundary treatment of curved wall surfaces.

scattered waves to exit the boundaries with minimal reflection. The discretized boundary is
highly irregular. It becomes a strong source of spurious numerical waves. These waves have
short wavelengths or high wavenumbers. To eliminate the spurious waves, artificial selective
damping terms (see Refs. [23, 24]) are added to the governing finite difference equations in
the boundary region around the cylinder. Because of the special boundary treatment needed
to enforce the curved wall boundary condition, the accuracy of the computed scattered
wave is influenced by the extrapolation formula used. Figure 16 shows the computed zero
pressure contours of the scattered waves at the beginning of a cycle (the 15th cycle from the
start of the numerical computation) when the Lagrange polynomials extrapolation is used in
the computation. Shown in dotted lines are the zero pressure contours of the exact solution.
It is obvious that there are significant differences between the two sets of contours. It is not
difficult to understand why there are such large discrepancies. The wavenumber analysis
of Section 2 indicates that at 8 mesh points per wavelength, the Lagrange polynomials
extrapolation method would give rise to large errors. Such errors contaminate the entire
computed scattered wave field. As the computation continues beyond the 15th cycle, the
error increases steadily. Ultimately, the numerical solution blows up.

Figure 17 is an identical computation using the optimized extrapolation scheme (with an
added constraint). The numerical solution converges to a time period state. There is now
excellent agreement between the numerical results and the exact solution. This is, of course,
not surprising since the optimized extrapolation as well as the time marching algorithm are
designed to yield fairly accurate results for waves with wavelengths of 8 mesh spacings or
longer.
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FIG. 16. Zero pressure contours of the scattered sound field at the beginning of a cycle (the 15th cycle from
the start of the numerical computation). Lagrange polynomials are used for extrapolation. —, numerical results;
. . . , exact solution.

FIG. 17. Zero pressure contours of the scattered sound field at the beginning of a cycle. Optimized extrapolation
with added constraint is used. —, numerical results;. . . , exact solution.
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5. CONCLUDING REMARKS

In this paper, the errors involved in the application of extrapolation and interpolation are
analyzed in the wavenumber space. Standard error analysis, invariably, uses Taylor series
expansion and truncation. The error given is usually the first truncated term. Unfortunately,
this term cannot often be evaluated, so that there is, in reality, no quantitative information on
the error. In contrast, the present wavenumber analysis directly provides the extrapolation
and interpolation error distribution as a function of wavenumber. This allows one to make
an accurate assessment of the error contribution by such a process apart from the other
sources of error in a large scale computation.

In this work, an optimized extrapolation and interpolation method is proposed. The op-
timization is carried out over a large band of low wavenumbers. When used in conjunction
with large scale, high-order finite difference simulations, this band of wavenumbers should
be chosen to be the same as the band of the resolved waves of the computation scheme. It is
well known that extrapolation often leads to numerical instability. Here it is suggested that
such numerical instability is the result of large error amplification over the high wavenum-
ber range. To reduce the tendency to induce numerical instability, the optimized method is
extended to include an additional constraint in the optimization process. The added con-
straint is designed to suppress large error amplification over the high wavenumbers. A
numerical example is provided to demonstrate that the new extrapolation method does not
lead to numerical instability whereas the use of the more familiar Lagrange polynomials
extrapolation method would.

The discussions in this paper have concentrated primarily on the error and numerical in-
stability of extrapolation and interpolation. When used in a specific application or problem,
special requirements may sometimes arise. To take into account such special requirements,
one may cast them into additional constraints. These constraints can then be incorporated
into the optimization process by which the coefficients of the extrapolation formula are
determined. This would provide tailor-made accurate and efficient extrapolation and inter-
polation formulas for specific applications.

APPENDIX: BOUNDARY INSTABILITY DUE TO EXTRAPOLATION

The dimensionless linearized Euler equations that govern the propagation and reflection
of acoustic waves are

∂u

∂t
+ ∂p

∂x
= 0 (A1)

∂p

∂t
+ ∂u

∂x
= 0. (A2)

The wall boundary condition is

x = η, u = 0. (A3)

For `≤−3 (see Fig. 2), the semi-discretized forms of (A1) and (A2) using a 7-point
standard central difference stencil are

du`
dt
= −

3∑
j=−3

aj p`+ j , a− j = −aj (A4)
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dp̀

dt
= −

3∑
j=−3

aj u`+ j . (A5)

In the wall boundary region,̀≥−2, standard backward difference stencils are used. On
discretizing (A1) and (A2), the governing finite difference equations in the boundary region,
accounting for the ghost value ofp at`= 1, are

du−2

dt
= −

3∑
j=−3

aj pj−2 (A6)

dp−2

dt
= −

2∑
j=−4

a42
j u j−2 (A7)

du−1

dt
= −

2∑
j=−4

a42
j pj−1 (A8)

dp−1

dt
= −

1∑
j=−5

a51
j u j−1 (A9)

du0

dt
= −

1∑
j=−5

a51
j pj (A10)

dp0

dt
= −

0∑
j=−6

a60
j u j , (A11)

wherea42
j , a31

j , anda60
j are the standard backward difference coefficients for a 6th order

scheme. For the wall boundary condition, (A3), the value ofu at x= η is to be obtained by
extrapolation from the nearest 7 mesh points. It may be written as

6∑
j=0

u− j Sj (η) = 0. (A12)

In the case where the Lagrange polynomials are used for extrapolation, the extrapolation
coefficients,Sj (η), are the values of the Lagrange polynomials evaluated atη, that is,
Sj (η)= `(7)j (η).

To investigate the stability of the system (A4) to (A12), we may take the time dependence
to be of the forme−iωt whereω is the complex angular frequency. The system is unstable
or the solution grows exponentially in time if Im(ω)>0. Let[

p`(t)

u`(t)

]
=
[

p̂`
û`

]
e−iωt . (A13)

Substitution of (A13) into (A4) to (A12) leads to the following system of finite difference
equations,

` ≤ −3, iω û` =
3∑

j=−3

aj p̂`+ j (A14)
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iω p̂` =
3∑

j=−3

aj û`+ j (A15)

` ≥ −2, iω û−2 =
3∑

j=−3

aj p̂ j−2 (A16)

iω p̂−2 =
2∑

j=−4

a42
j û j−2 (A17)

iω û−1 =
2∑

j=−4

a42
j p̂ j−1 (A18)

iω p̂−1 =
1∑

j=−5

a51
j û j−1 (A19)

iω û0 =
1∑

j=−5

a51
j p̂ j (A20)

iω p̂0 =
0∑

j=−6

a60
j û j (A21)

6∑
j=0

û− j Sj (η) = 0. (A22)

Finite difference equations (A14) and (A15) can be solved exactly (see Tam, Fang, and
Kurbatskii [25]) by letting [

p̂`
û`

]
=
[

p̃

ũ

]
eiβ`, (A23)

where p̃, ũ, andβ are constants. On substituting (A23) into (A14) and (A15) and upon
eliminatingũ, it is found

(β̄
2−ω2) p̃ = 0, (A24)

where

β̄ = 2
3∑

j=1

aj sin(β j ). (A25)

For nontrivial solution,p̃ cannot be zero. Equation (A24) yields the following dispersion
relations and eigenfunctions

β̄(β) = ω,
[

p̃

ũ

]
=
[

1

1

]
(A26)

β̄(β) = −ω,
[

p̃

ũ

]
=
[

1

−1

]
. (A27)

It is noted that, by (A25),̄β(−β)=− β̄(β).



EXTRAPOLATION AND INTERPOLATION METHOD 615

FIG. 18. Trajectories of the six roots of̄β(β)=ω in the complexβ-plane asω is pushed toward the real
ω-axis in the upper half of the complexω-plane.

For a givenω, each of the dispersion relations̄β(β)= ±ω has six independent roots. Let
those corresponding tōβ(ω)=ω beβ j (ω), j = 1, 2, 3, . . . ,6. Three of those roots represent
waves propagating to the left and the other three propagating to the right. Briggs [26] has
developed a procedure to identify the direction of propagation of each of the roots (see
also Tam and Dong [21]). Essentially, for the dispersion relationβ̄(β)=ω, one starts by
setting the value ofω in the upper halfω-plane with a large imaginary part. The six roots
are then found. Three of the roots,β1, β2, andβ3, lie in the lower half of the complex
β-plane whereasβ4, β5, andβ6 lie in the upper halfβ-plane as shown in Fig. 18. It can
be shown asω is pushed toward the realω-axis, the roots remain in the same half of
theβ-plane. By the causality condition, the three solutions corresponding to the roots in
the lower halfβ-plane represent waves propagating in the negativex-direction. The other
three solutions represent waves propagating in the positivex-direction. By the relationship
β̄(−β)=−β̄(β), the three roots of the dispersion relation̄β(β)=−ω which give rise to
wave solutions propagating in the negativex-direction are−β4,−β5, and−β6. Therefore,
the general solution of finite difference equations (A14) and (A15) for`≤−3 satisfying
the outgoing wave condition is[

p̂`
û`

]
= c1

[
1

1

]
eiβ1` + c2

[
1

1

]
eiβ2` + c3

[
1

1

]
eiβ3` + c4

[
1

−1

]
e−iβ4`

+ c5

[
1

−1

]
e−iβ5` + c6

[
1

−1

]
e−iβ6`, (A28)

wherecj , j = 1, 2, . . . ,6, are constants.
Now if we replacep̂` andû` for `=−3,−4,−5,−6 in (A14) to (A22) by (A28), we ob-

tain a linear algebraic system of thirteen equations for the thirteen unknownsc1, c2, . . . , c6,
p̂−2, p̂−1, p̂0, p̂1, û−2, û−1, û0. For nontrivial solution, the determinant of the matrix
system,1(ω), must be equal to zero; i.e.,

1(ω) = 0. (A29)

The roots of (A29) provide the eigenvalues ofω. Of interest is whether there is any root of
ω with a positive imaginary part. Such a root constitutes an unstable mode. This boundary
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FIG. 19. Grid search for unstable solutions in the complexω-plane. —, zero contour of the real part of the
determinant;. . . , zero contour of the imaginary part of the determinant.η= 0.45.

instability mode is a spurious solution of the physical problem. It arises from the finite
difference approximation and the extrapolation formula. The roots of (A29) can only be
determined numerically. A simple way is to use the grid search method of Tam and Hu [27].
On following this method, the contours of Re[1(ω)]= 0 and Im[1(ω)]= 0 in the complex
ω-plane are constructed. The intersection points of these two sets of contours in theω-plane
give the roots of (A29).

Obviously, the roots of (A29) are influenced by the coefficients of the extrapolation
formula,Sj (η), of (A22). Figure 19 shows the Re[1(ω)]= 0 and Im[1(ω)]= 0 contours in
theω-plane for the case when the Lagrange polynomials are used for extrapolation. Clearly,
atη= 0.45 there is an unstable mode. The frequencyωr and growth rateωi of this instability
as a function of the distance of the wall to the first mesh point,η, are given in Fig. 3. Forη
smaller than 0.42, there is no root of (A29) lying in the upper halfω-plane. In other words,
the system is stable. Now if the optimized extrapolation with an added constraint method
is used in (A22), no unstable root of (A29) could be found forη≤ 1.0. This was confirmed
by extensive direct numerical solutions of the system of equations (A4) to (A12). This is
an important example. It shows that extrapolation can trigger numerical instability. At the
same time, it also demonstrates that by using an improved extrapolation procedure such
numerical instability can be avoided.
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